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Abstract. The assessment of road infrastructure exposure to extreme weather events is of major importance for scientists and 

practitioners alike. In this study, we compare the different extreme value approaches and fitting methods with respect to their 

value for assessing the exposure of transport networks to extreme precipitation and temperature impacts. Based on an 10 

Austrian data set from 25 meteorological stations representing diverse meteorological conditions, we assess the added value 

of partial duration series over the standardly used annual maxima series in order to give recommendations for performing 

extreme value statistics of meteorological hazards. Results show the merits of the robust L-moment estimation, which 

yielded better results than maximum likelihood estimation in 62 % of all cases. At the same time, results question the general 

assumption of the threshold excess approach (employing partial duration series, PDS) being superior to the block maxima 15 

approach (employing annual maxima series, AMS) due to information gain. For low return periods (non-extreme events) the 

PDS approach tends to overestimate return levels as compared to the AMS approach, whereas an opposite behaviour was 

found for high return levels (extreme events). In extreme cases, an inappropriate threshold was shown to lead to considerable 

biases that may outperform the possible gain of information from including additional extreme events by far. This effect was 

neither visible from the square-root criterion, nor from standardly used graphical diagnosis (mean residual life plot), but 20 

from a direct comparison of AMS and PDS in synoptic quantile plots. We therefore recommend performing AMS and PDS 

approaches simultaneously in order to select the best suited approach. This will make the analyses more robust, in cases 

where threshold selection and dependency introduces biases to the PDS approach, but also in cases where the AMS contains 

non-extreme events that may introduce similar biases. For assessing the performance of extreme events we recommend 

conditional performance measures that focus on rare events only in addition to standardly used unconditional indicators. The 25 

findings of the study directly address road and traffic management, but can be transferred to a range of other environmental 

variables including meteorological and hydrological quantities. 

1 Introduction 

Reliable information about the exposure of road infrastructure networks to extreme weather events is of major concern for 

road authorities, governmental institutions and safety researchers all over the world (TRB, 2008; Koetse and Rietveld, 2009; 30 
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Eisenack et al., 2011; Doll et al., 2013; UNECE, 2013; Meyer et al., 2014; Michaelides, 2014; Schweikert et al., 2014a, 

2014b; Matulla et al., 2016). In a changing climate (IPCC, 2012) and due to extensive soil sealing (Nestroy, 2006) the 

impact of extreme weather events are likely to increase in both frequency and intensity (APCC, 2014). Against this 

background, the resilience of transport systems with respect to weather hazards has become increasingly important. 

A basic requirement for foresightful road infrastructure management are data about both the probability and magnitude of 5 

severe weather events. This information can be derived from long-term records of weather quantities such as precipitation 

and temperature, by means of statistical extreme value modeling. While extreme value theory provides a methodological 

framework that is commonly used in various scientific disciplines, such as hydrology (Katz et al., 2002), finance (Embrechts 

et al., 2003), engineering (Castillo et al., 2005) and climate sciences (Katz, 2010; Cheng et al., 2014), the application of these 

tools for road network exposure analysis is a relatively uncharted area. In particular, formal comparative assessments of the 10 

various statistical methods that can be applied for estimating return levels of extreme events are rare. 

Two basic approaches have been proposed for deriving extreme value series (Coles, 2001), which are both widely applied in 

studying extreme meteorological events (e.g. Smith, 1989; Davison and Smith, 1990; Parey et al., 2010; Villarini, 2011; 

Papalexiou and Koutsoyiannis, 2013). On the one hand, the maximum value per year can be used in the block maxima 

approach, resulting in an annual maxima series (AMS). On the other hand, all values exceeding a certain threshold can be 15 

considered extreme, leading to the threshold excess approach based on partial duration series (PDS). Once the extreme value 

series has been derived, an appropriate distribution function is fitted to these observations by using different parameter 

estimation methods, such as maximum likelihood estimation, method of moments or Bayesian methods for parameter 

estimation. Clearly, there are a number of possible combinations of the approaches that may lead to different, often equally 

plausible results. 20 

Several efforts have been made to compare the performance of block maxima and threshold excess approaches. While some 

studies only provide a qualitative description of resulting parameter estimates and estimated return levels for both methods 

(Jarušková and Hanek, 2006), more formal assessment approaches are based on the asymptotic variance of the T-year event 

estimator (Cunnane, 1973) or on various goodness-of-fit tests and model performance metrics (Madsen et al., 1997a, 1997b; 

Bezak et al., 2014). Controversial conclusions have been drawn. For instance, Madsen et al. (1997a) found for extreme 25 

discharges that the most suitable approach depends on the sample size and the shape parameter of the fitted functions. 

However, Ben-Zvi (2009) and Bezak et al. (2014) argue that a Generalized Pareto distribution fitted to partial duration series 

yields the best results for modelling rainfall and discharge extremes. Mkhandi et al. (2005), again, found that AMS and PDS 

methods result in similar predictions of flood magnitudes. All of these studies document the importance of extreme value 

analysis in hydrology, but we are not aware of similar studies on temperature extremes that are equally important as rainfall 30 

impacts for road networks. Moreover, the studies did not specifically assess the performance of methods with respect to rare 

events, such as 100-year events, which are more relevant for risk assessments than events at the moderate tail of the 

distribution. 
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In this study, we compare the different extreme value approaches and fitting methods with respect to their value for assessing 

the exposure of transport networks to extreme weather impacts. Based on an Austrian data set from 25 meteorological 

stations representing diverse meteorological conditions, we assess the added value of partial duration series over the 

standardly used annual maxima series in order to give recommendations for performing extreme value statistics of 

meteorological hazards. 5 

2 Materials and methods 

2.1 Data – Meteorological indicators 

This study focuses on several meteorological indicators that can be used to assess the exposure of road networks to two main 

meteorological quantities: precipitation and temperature. These two variables are considered to have the most serious 

influence on damage to infrastructure (Matulla et al., in press). They are measured by meteorological services on a regular 10 

basis so the data quality is usually high. Nevertheless, the methodology presented in this paper is applicable to various other 

meteorological quantities (e.g. maximum wind speed), if time-series of about 30 years or more are available. 

Four meteorological indices are used in this study. Temperature impacts are considered by daily minimum (Tmin) and daily 

maximum temperature (Tmax). In addition, maximum daily temperature difference (T = Tmax – Tmin) is analysed, with all 

temperature indices in [°C]. Regarding precipitation impacts, the daily precipitation sum [mm/d] has been chosen. 15 

In order to identify suitable meteorological stations that represent the main climate features of the highway network in 

Austria, all monitoring stations operated by the national weather service Zentralanstalt für Meteorologie und Geodynamik 

(ZAMG) served as a starting point. The selection of suitable stations was carried out in a stepwise procedure with respect to 

the following considerations: Firstly, the spatial proximity of available measuring stations to the highway network was 

considered, by excluding stations with a distance greater than 10 kilometres from the data set. Secondly, data availability and 20 

data quality were considered. As sufficiently long time series are a prerequisite for reliable return level estimation, only 

stations with more than 30 years of record (i.e., since 1 January 1985) and with less than 5% missing values were selected. 

Finally, topographic conditions and regional peculiarities were taken into account for selecting evenly spread and 

climatically representative stations. This step was guided by visual inspection of climate maps (Hiebl et al., 2011) and the 

digital hydrological atlas of Austria (BMLFUW, 2007; Fürst et al., 2009). The dataset so obtained consists of 25 hot spots 25 

representing climatically homogeneous regions of Austria (Fig. 1). 
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Figure 1: Location of the selected meteorological stations used for extreme value analysis. 

2.2 Extreme value selection 

2.2.1 Block maxima method 

The first approach for deriving extreme value series consists in selecting maximum (or similarly minimum) values of the 5 

observations within subsequent time intervals (blocks) of constant length. While the block size is freely selectable, a trade-

off has to be made between bias (small blocks) and variance (large blocks). Most commonly, the length of the block is 

chosen to correspond to a calendar year (Coles, 2001), resulting in an annual extreme value series. This was also the case in 

our study. 

Based on the Fisher–Tippett–Gnedenko theorem, a generalized extreme value (GEV) distribution is appropriate for 10 

modelling the resulting annual maxima series (Fisher and Tippet, 1928; Gnedenko, 1943). The cumulative distribution 

function of the GEV is defined by 

ሻݖఓ,ఙ,కሺܩ  ൌ ݌ݔ݁ ቊെ ቂ1 ൅ ߦ ቀ
ݖ െ ߤ
ߪ

ቁቃ
ିଵ కൗ

ቋ (1) 

for the set ቄݖ: 1 ൅ ߦ ቀ
௭ିఓ

ఙ
ቁ ൐ 0ቅ where ߤ is the location parameter, ߪ is the scale parameter and ߦ is the shape parameter. 

Alternative formulations with inverse sign of ߦ are also common (e.g. Hosking, 1990). In both cases, the parameters satisfy 

െ∞ ൏ ߤ ൏ ߪ ,∞ ൐ 0 and െ∞ ൏ ߦ ൏ ∞ (Coles, 2001). 15 
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The GEV comprises three different types of distributions, which can be distinguished by the sign of their shape parameter: 

Gumbel, Fréchet and Weibull distribution (Fréchet, 1927; Gumbel, 1958; Coles, 2001; Embrechts et al., 2003; Basrak, 

2014). The Gumbel distribution is commonly applied for maxima that are not limited towards an upper bound, whereas the 

Weibull case is more appropriate for minima which are often limited by a lower bound (Tallaksen and van Lanen, 2004). 

2.2.2 Threshold excess method 5 

In some cases, fitting distributions to block maxima data is a wasteful approach as only one value per block is used for 

modelling. A threshold excess approach potentially provides more information on extremes (Coles, 2001). 

Analogous to the choice of the block size in the block maxima approach, the selection of the threshold value in the threshold 

excess method is also subject to a trade-off between bias (due to selecting non-extreme events if the threshold is low) and 

variance (due to a small number of exceedances when selecting a high threshold). Hence, the choice of a suitable threshold is 10 

important. The basic aim is to select the potentially lowest threshold, given the prerequisite that the extreme value model 

must provide a reasonable approximation to exceedances above this threshold and shall not contain non-extreme events 

(Coles, 2001). According to the Pickands–Balkema–de Haan theorem, a Generalized Pareto (GP) distribution is suited for 

modelling the resulting threshold excesses (Balkema and de Haan, 1974; Pickands, 1975): It states that, for some large 

threshold ݑ, the distribution function of (ܺ െ ܺ conditional on ,(ݑ ൐  can be well approximated by the Generalized Pareto 15 ݑ

distribution, which is defined by 

ሻݖక,ఙሺܪ  ൌ ൞
1 െ ቂ1 ൅ ߦ ቀ

ݖ െ ߤ
ߪ

ቁቃ
ିଵ కൗ

for ߦ ് 0

1 െ ݌ݔ݁ ቀെ
ݖ െ ߤ
ߪ

ቁ for ߦ ൌ 0
 (2) 

where the support is ݖ ൒ ߦ in the case ߤ ൒ 0, and ߤ ൑ ݖ ൑ ߤ െ ߦ when ߦ/ߪ ൏ 0 . This is valid for x1, x2, …, xn being a 

sample of n independent and identically distributed realizations of a random variable X following some common distribution 

function F (Coles, 2001). 

A number of approaches have been proposed for selecting an appropriate threshold. Coles (2001) suggests to let the selection 20 

be guided by graphical diagnostics about bias (mean excess) and stability of the scale and shape parameter. Despite these 

criteria are well justified from a theoretical point of view, its application involves substantial elements of subjectivity leading 

to ambiguous results (Scarrott and MacDonald, 2012; Northrop and Coleman, 2014). To overcome this problem, we 

employed the deterministic square root rule ݇ ൌ √݊ (Ferreira et al., 2003) for pre-selecting the threshold level in an objective 

way, using the kth upper order statistic as a threshold, which is related to the total time series length n. Albeit this rule does 25 

not properly account for threshold uncertainty on subsequent inferences (Scarrot and MacDonald, 2012), it satisfies the 

intermediate sequence of order statistics that formally ensures tail convergence (Leadbetter et al., 1983). The so-obtained 

threshold was subsequently validated by the graphical criteria of Coles (2001) for bias and parameter stability. 
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2.3 Dealing with non-stationarity and dependency 

Extreme value theory assumes that data are independent and identically distributed (Coles, 2001; Gilleland and Katz, 2011; 

Katz, 2010; Katz, 2013; Cheng et al., 2014). To test for non-stationarity in the expected value we perform separate Mann-

Kendall trend tests (Mann, 1945; Kendall, 1976; Gilbert, 1987) at a significance level of ߙ ൌ 0.05 (Zhang et al., 2004) for 

the extreme value series of each meteorological indicator. In case of significant trends, detrending was performed with 5 

respect to the last year of the time series (i.e. 2015). The trend-corrected estimation of a meteorological indicator z at time t 

is obtained as 

௧ݖ̂  ൌ ௧ݕ െ ො௧ݕ ൅  ොଶ଴ଵହ (3)ݕ

where ݕ௧ is the measurement at time t and ݕො௧ is the trend at time t obtained from the linear trend model 

ො௧ݕ  ൌ ଴ߚ ൅  (4) ݐଵߚ

with intercept ߚ଴ and slope ߚଵ, and ݕොଶ଴ଵହ being the trend estimate for 2015. 

For climate variables independence of data is usually a minor issue for the annual maxima approach as multi-annual 10 

dependencies are usually low for most climates (Madsen et al., 1997a; Katz et al., 2002). Regarding the threshold excess 

method, threshold exceedances on consecutive days will likely violate the assumption of independence. Dependent values in 

the threshold excess series are eliminated by a declustering procedure that consists in removing threshold exceedances within 

the autocorrelation length on both sides of the local maxima (Jarušková and Hanek, 2006). Based on sensitivity analysis an 

autocorrelation window of 5 days was chosen for the three temperature indicators, while a window of 3 days was chosen for 15 

the accumulated daily precipitation.  

2.4 Parameter estimation 

Once the extreme value series is available, a theoretical distribution needs to be fitted. Two different methods of parameter 

estimation are used within the scope of the present analysis.  

The first method, maximum-likelihood estimation (MLE), was formally introduced by Fisher in the early 20th century 20 

(Fisher, 1912; Aldrich, 1999; Hald, 1999). Let x1, x2, …, xn be a sample of n independent and identically distributed 

realizations of a random variable with the unknown probability density function ݂ሺߠ|ݔ଴ሻ. As the true value of the parameter 

vector ߠ଴ is unknown, an estimate ߠ෠ which is as close to ߠ଴ as possible is found by maximizing the likelihood function 

ሻߠሺܮ  ൌෑ݂ሺݔ௜|ߠሻ

௡

௜ୀଵ

 (5) 

i.e. by maximizing the accordance of the extreme value model with the observed data (Coles, 2001).  

The second method, L-moments estimation (LMOM), evolved from modifications of probability weighted moments of 25 

Greenwood et al. (1979). They are linear combinations of first order statistics and are hence more robust to measurement 

errors or sampling uncertainty than conventional moments (Hosking, 1990). The rth population L-moment of a random 

variable X is defined as 
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௥ߣ  ≡ ଵ෍ሺെ1ሻ௞ିݎ
௥ିଵ

௞ୀ଴

ቀݎ െ 1
݇

ቁܺܧ௥ି௞:௥ , ݎ ൌ 1, 2, … (6) 

As compared to MLE, L-moments are superior for fitting GEV distributions in terms of bias and variance, in particular for 

small sample sizes (Hosking et al., 1985).  

As far as reliability of the fitting results is concerned, confidence intervals play a major role for assessing uncertainty. The 

most common way to derive a ሺ1 െ  is by using ߠ ௜ of a parameter vectorߠ ሻ confidence interval for a particular componentߙ

the formula ߠ෠௜ േ ఈ/ଶݖ 	ൈ ߪ √݊⁄ , with ߠ෠௜ denoting the estimate for ߠ௜, ݖఈ/ଶ indicating the ߙ 2⁄  quantile of the standard normal 5 

distribution and ߪ √݊⁄  indicating the standard error of the estimate.  

The approach assumes Gaussian distributed parameter estimators, which may be inappropriate for extreme value 

distributions. For LMOM estimators resampling methods have been recommended (Burn, 2003). Thus, nonparametric 

bootstrapping with 500 iterations was applied in this study. MLE offers a more accurate method for deriving confidence 

intervals based on the profile likelihood (Coles, 2001). The profile log-likelihood for ߠ௜ is defined as 10 

௜ሻߠ௣ሺܮ  ൌ max
ఋ

,௜ߠሺܮ  ሻ (7)ߜ

where ߜ denotes all components of parameter vector ߠ excluding ߠ௜. That is, for each value of ߠ௜,	ܮ௣ሺߠ௜ሻ is the maximized 

log-likelihood over all remaining elements of ߠ.  

2.5 Assessment method 

There are various performance measures that are regularly employed in model evaluation, including the root mean squared 

error (RMSE) and the mean absolute error (MAE). These metrics provide a comprehensible and objective basis regarding the 15 

assessment of the fitted functions. 

In addition, most events of the extreme value series are only moderate and these will have an overly excessive influence on 

the performance measure. In order to specifically assess the accuracy of the fitted models for higher quantiles (i.e. for larger 

return periods), we propose conditional variants of the root-mean-square deviation (CRMSET) and mean absolute error 

(CMAET). These metrics are conditional on the return period T of the underlying data and specifically consider the upper tail 20 

of the fitted functions. Using Weibull plotting positions as empirical probability estimator (Weibull, 1939; Makkonen, 2005), 

these measures are defined as 

 CRMSE் ൌ ඨ
∑ ሺݕො௜ െ ௜ሻଶ௡ݕ
௜ୀଵ

݊௧
:௜ݕ∀ ቎െ

1

ln ቀ
݉

ܰ ൅ 1ቁ
቏ ൒ ܶ (8) 

 CMAE் ൌ
∑ ො௜ݕ| െ |௜ݕ
௡
௜ୀଵ

݊௧
:௜ݕ∀ ቎െ

1

ln ቀ
݉

ܰ ൅ 1ቁ
቏ ൒ ܶ (9) 

where ݕො௜ denotes the model prediction or the ith element of the extreme value series, ݕ௜ is its observed value, m is its order 

statistic (with ݉ ൌ 1 for the minimum and ݉ ൌ ܰ for the maximum), and ்݊ is the number of elements with an empirical 
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return period greater than T. Hence, the conditional performance measures are calculated by using only the residuals of 

observations and theoretical distribution above some relevant return level T. In this study, ܶ ൌ 10 years has been chosen and 

the CRMSE10 and CMAE10 are calculated.  

In addition to the goodness-of-fit analysis we performed graphical diagnosis of the extreme value series and the fitted 

distributions in quantile plots. For AMS, plotting of empirical distributions is straightforward. The return level (i.e. 5 

magnitude) ்ݖ of each observed extreme event is plotted against its return period (i.e. recurrence interval) ܶ ൌ 1 ሺ1 െ ܲሻ⁄ , 

using Weibull plotting positions as an estimator of empirical recurrence probability ܲ. For AMS, the T-year return level is 

obtained using the quantile function of the GEV: 

஺ெௌ,்ݖ  ൌ 	 ൝
ߤ െ

ߪ
ߦ
ൣ1 െ ሼെlnሺܲሻሽିక൧ for ߦ ് 0

ߤ െ ߪ lnሼെlnሺܲሻሽ for ߦ ൌ 0
 (10) 

with parameters according to Eq. 1. In the case of PDS the return period T needs to be transformed from an observation scale 

to an annual scale by taking into account the number of threshold exceedances within the observation period (Coles, 2001). 10 

Hence, the T-year return level is obtained from the quantile function of the GP by: 

௉஽ௌ,்ݖ  ൌ ݑ ൅
ߪ
ߦ
ቂ൫ܶ݊௨൯

క
െ 1ቃ (11) 

where u is the threshold, n is the number of observations per year, ௨ is the sample proportion of threshold exceedances, and 

remaining parameters according to Eq. 2. The so obtained return levels were used for synoptic plotting of AMS and PDS. 

3 Results 

3.1 Non-stationarity 15 

Linear trends were considered by incorporating dependency on time by means of precedent detrending within model 

estimation. Most of the temperature hot spots showed a significant change over time in at least one of temperature indicators. 

The observed positive temperature trends lead to both an increase of daily maximum temperatures and at the same time to an 

increase of daily minimum temperatures. As illustrated by Fig. 2, the consequence of incorporating a trend model in the 

analysis are non-stationary return levels that refer to a specific time. We will give results for the end of the observation 20 

period.  
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Figure 2: Return level plot of temperature maxima at Pörtschach (Carinthia) with linear trend correction. The trend is visible in 
the lines depicting the 5-year return level (gray dashed line) and the 100-year return level (green solid line). This is an illustrative 
example of temperature trends that are commonly observed at the selected stations for both temperature maxima (increasing 
trend) and temperature minima (decreasing trend). 5 

For precipitation, non-stationarity seems less important than for temperature indicators: About 85 % of the hot spots of our 

study area showed no trend in the annual extremes. This is consistent with the expectation of the Austrian Panel of Climate 

Change (APCC, 2014) that climate impacts on precipitation will mainly lead to seasonal shifts rather to changes in total 

annual precipitation. 

3.2 Parameter estimation method 10 

The two approaches have been tested for the four meteorological indicators. In summary, it becomes apparent that the 

relative performances of MLE and LMOM are strongly situation-dependent. For instance, while the return level plots for 

temperature maxima at Schwechat in the eastern lowlands show that the function fitted on the basis of LMOM behaves more 

robust, which appears to be beneficial in this case (Fig. 3), return level plots of daily rainfall at Brenner on the Austrian-

Italian border indicate that the less robust MLE offers better fit for higher quantiles (Fig. 4). 15 
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Figure 3: Return level plot of temperature maxima at Schwechat. Return level estimation is based on the threshold excess 
approach with two different parameter estimation methods (MLE and LMOM-estimation). Solid lines show the mean estimate, 
while dashed lines indicate the 95% confidence intervals for the fitted functions. 

 5 

Figure 4: Return level plot of daily rainfall events at Brenner. Return level estimation is based on the block maxima approach with 
two different parameter estimation methods (MLE and LMOM-estimation). Solid lines show the mean estimate, while dashed lines 
indicate the 95% confidence intervals for the fitted functions. 
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Tab. 1 summarizes the overall goodness-of-fit for the 100 climate records (25 stations x 4 indicators) assessed in this study 

for the AMS approach. LMOM performed better in 69 % of the cases when assessed by the RMSE, and in 94 % when 

assessed by the MAE (note that for 100 climate records one percent corresponds to one record). Since the MAE favors 

overall model accuracy and gives little weight to outliers with large errors, the better overall fit achieved by LMOM nicely 

illustrates the greater robustness of this method. These differences apply to most individual meteorological indicators. The 5 

sole exception is daily minimum temperature, which yields similar success rates of MLE and LMOM for both goodness-of-

fit measures. This is attributable to several larger residuals in these time series. 

Table 1: Comparison of parameter estimation methods for the AMS approach based on goodness-of-fit measures RMSE and 
MAE. Numbers indicate success rates (% of records) of MLE and LMOM.  

Indicator RMSE (MLE) RMSE (LMOM) MAE (MLE) MAE (LMOM) 

Precipitation 7 18 4 21 

Tmin 13 12 1 24 

Tmax 5 20 0 25 

T 6 19 1 24 

Total 31 69 6 94 

 10 

The relative performances turned out to be more balanced with respect to the PDS approach. As indicated by Tab. 2, MLE 

performed better in 56 % and 53 % of the cases when judged by the RMSE and MAE, respectively. Again, daily minimum 

temperature deviates from the general picture, by showing clear advantages in favor of LMOM-estimation in this case. 

Table 2: Comparison of parameter estimation methods for the PDS approach based on goodness-of-fit measures RMSE and MAE. 
Numbers indicate success rates (% of records) of MLE and LMOM.  15 

Indicator RMSE (MLE) RMSE (LMOM) MAE (MLE) MAE (LMOM) 

Precipitation 14 11 13 12 

Tmin 9 16 12 13 

Tmax 17 8 14 11 

T 16 9 14 11 

Total 56 44 53 47 

 

Apart from the overall goodness-of-fit it is interesting to assess how the fit depends on the return period of events. This has 

been done by visual inspection of the distribution plots, such as the examples shown in Fig. 3 and Fig. 4. In most cases there 

were only minor differences between MLE and LMOM when considering return levels below 10 years, but often 

considerable differences for larger return periods. For the 100-year events, e.g., results of the temperature indicators differed 20 

by about 0.5 °C on average, and by up to 2 °C for single stations. With maximum differences around 10 mm/d, the 100-year 

precipitation events showed even greater variation. 
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As the objective of extreme value analysis is usually related to return periods of 10 years or more, we specifically assessed 

the performance of the extreme upper tail of the distribution by the conditional goodness-of-fit measures CRMSE10 and 

CMAE10. Results indicate again a favorable performance of LMOM-method for AMS series (Tab. 3), when judged by the 

CRMSE10 (58 %) and the CMAE10 (62 %).  

Table 3: Comparison of parameter estimation methods for the AMS approach based on conditional goodness-of-fit measures 5 
CRMSE10 and CMAE10. Numbers indicate success rates (% of records) of MLE and LMOM. 

Indicator CRMSE10 (MLE) CRMSE10 (LMOM) CMAE10 (MLE) CMAE10 (LMOM) 

Precipitation 11 14 11 14 

Tmin 11 14 10 15 

Tmax 12 13 8 17 

T 8 17 9 16 

Total 42 58 38 62 

 

In contrast, results for the PDS showed, again, a slight advantage of MLE when assessed with the goodness-of-fit measures 

for the conditional variants. Both measures indicate a preference towards MLE in 58 % of the cases. The better performance 

of the MLE method is against the expectation based on robustness and will be examined in more detail in the following 10 

section. 

Table 4: Comparison of parameter estimation methods for the PDS approach based on conditional goodness-of-fit measures 
CRMSE10 and CMAE10. Numbers indicate success rates (% of records) of MLE and LMOM.  

Indicator CRMSE10 (MLE) CRMSE10 (LMOM) CMAE10 (MLE) CMAE10 (LMOM) 

Precipitation 14 11 14 11 

Tmin 9 16 10 15 

Tmax 19 6 19 6 

T 16 9 15 10 

Total 58 42 58 42 

3.3 Extreme value selection 

Tab. 5 presents the relative performances of AMS and PDS approaches based on the two parameter estimation methods. 15 

Albeit overall results show advantages for the AMS approach in terms of goodness-of-fit for the upper tail of the underlying 

distributions, results largely depend on the underlying meteorological indicators. While precipitation and daily maximum 

temperature difference offer a better fit when using GEV distributions of AMS, GP distributions of PDS appear better suited 

for modelling daily temperature maxima and minima.  
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Table 5: Comparison of AMS and PDS approach based on conditional goodness-of-fit measures CRMSE10 and CMAE10 for two 
parameter estimation methods MLE and LMOM. Numbers indicate success rates (% of records) of approaches.  

Indicator Fitting Method CRMSE10 (GEV) CRMSE10 (GP) CMAE10 (GEV) CMAE10 (GP) 

Precipitation MLE 18 7 19 6 

Precipitation LMOM 19 6 20 5 

Tmin MLE 9 16 8 17 

Tmin LMOM 10 15 10 15 

Tmax MLE 10 15 11 14 

Tmax LMOM 13 12 14 11 

T MLE 16 9 17 8 

T LMOM 17 8 16 9 

Total  112 88 115 85 

 

To perform a direct comparison, Fig. 5 presents the deviations between return levels derived via AMS and PDS approach for 5 

the four meteorological indicators. A common pattern regarding the magnitude of the estimated return levels can be 

observed. While GP estimates seem to result in higher return levels for lower return periods (indicated by negative 

deviations), this behavior changes to the opposite for higher return periods. This issue will be further explored in the 

discussion section. Nonetheless, it shall be noted that daily minimum and maximum temperature do not fully fit into these 

patterns. Albeit maximum temperature shows the same tendencies as precipitation, the PDS always yields higher return 10 

levels than the AMS, suggesting that differences mainly occur at higher return periods. Temperature minima, however, show 

a rather constant overestimation (i.e., underestimation of negative magnitude) of PDS compared to AMS regardless of the 

frequency of events.  
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Figure 5: Differences in estimated return levels between GEV and GP models for six selected return periods. These differences are 
calculated by subtracting the GP estimate from the GEV estimate, given the same parameter estimation method. This results in 
n = 50 observations per boxplot. 

Finally, Tab. 6 summarizes the success rates of all methods based on CRMSE10. Results show an overall advantage of using 5 

L-moments estimation as compared to MLE. As far as the two different methods of extreme value selection are concerned, 

the AMS approach seems to slightly outperform the threshold excess approach in this study. While results are basically quite 

balanced between all four methods, AMS fitted on the basis of LMOM estimation turned out to yield the best results in about 

35% of all cases. 

  10 

daily maximum temperature difference [°C] daily precipitation totals [mm/d]

daily maximum temperature [°C] daily minimum temperature [°C]

-2

-1

0

1

2

-20

0

20

-1

0

1

2

3

0

2

4

6

2 years 5 years 10 years 20 years 50 years 100 years 2 years 5 years 10 years 20 years 50 years 100 years

2 years 5 years 10 years 20 years 50 years 100 years 2 years 5 years 10 years 20 years 50 years 100 years

return period

G
E

V
 -

 G
P

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-373, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 5 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



15 
 

Table 6: Success rates of methods according to CRMSE10. The bold value in the center of each field indicates the overall count. 
The four smaller numbers in the corners display the counts with respect to temperature minima (top left), temperature maxima 
(top right), temperature difference (bottom left) and precipitation totals (bottom right). Bold values indicate better performance. 

  Distribution 

   GEV   GP  Total 

Fitting 
method 

 3  4 5  12  

MLE  19   19  38 

 4  8 1  1  

 7  5 10  4  

LMOM  35   27  62 

 12  12 8  4  

Total  54   46  100 

4 Discussion 

We compared the relative merits of the block maxima method and the threshold excess approach. In addition, two different 5 

fitting methods have been contrasted. This results in four possible combinations of extreme value model parameter 

estimation, all of which have certain strengths and weaknesses. Concerning the fit of the distributions to sample, we found a 

slight advantage of using LMOM instead of MLE, especially in combination with AMS. For PDS there was a slight 

advantage of using MLE. But overall, the differences were not huge.  

The conditional assessment of the individual deviation between return levels of AMS and PDS yielded deeper insight in the 10 

relative performances of methods. Most importantly, we found systematic deviations between both approaches (Fig. 5): For 

low return periods (non-extreme events) the PDS approach tends to overestimate return levels as compared to the AMS 

approach. An opposite behavior was found for high return levels (extreme events). To assess the reasons for this systematic 

behavior, we selected four example series that represent extreme cases, where results of approaches differ significantly. 

The first two examples are daily precipitation at Sankt Michael (Fig. 6a) and Brenner (Fig. 6b), where extreme value series 15 

deviate from the ideal, smooth behavior of a homogeneous extreme value series. These fluctuations point to either 

measurement errors or process heterogeneity that will introduce uncertainty into extreme value analysis. In the case of Sankt 

Michael, the most extreme events appear as outliers that deviate from the general behavior of the sample. In general, LMOM 

will give lower weight to such leverage points but this seems not the case here where the GP fitted by LMOM seems more 

attracted. A plausible explication would be that the upper-tail behavior is resulting from the attraction of the distribution at 20 

the lower end, because of the limited flexibility of the GP. In the case of Brenner, the extreme values seem to follow the 

same distribution than the remaining sample so one would have more confidence in the validity of these values. However, 

extreme values are always prone to higher uncertainty than the remaining sample. The MLE estimate gives more weight to 

these values and shows a better fit at the upper tail in this case, whereas LMOM gives less weight to these values, and makes 
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visible that they are not perfectly following the shape of the entire distribution. The choice of the parameter estimation 

method will finally depend on the weight one tends to give to the extreme values as compared to the remaining sample.  

 

Figure 6: Return level plots of daily rainfall events at the hot spot in (a) Sankt Michael im Lungau, which is located in the Central 
Eastern Alps and (b) Salzburg, located at the northern edge of the Alps. Return level estimation is based on the block maxima 5 
approach and on the threshold excess approach with two different parameter estimation methods (MLE and LMOM-estimation). 
Based on the CRMSE10, GP fitted on the basis of LMOM-estimation was found to be the most appropriate method for Sankt 
Michael, while GEV with MLE was found to be most suitable in Salzburg. Please note that functions are plotted without associated 
confidence intervals for the sake of clarity. 

It is also interesting to analyze extreme cases where AMS and PDS methods yield contrasting results (Fig. 7). When 10 

focusing on the empirical distributions, we observe that only the highest events (three in the case of Bruck an der Mur, and 

two in the case of Graz) have almost identical empirical probabilities in both extreme value series. At the lower end, we 

observe that there are several events in the AMS below the threshold level of PDS, which fit well to the distribution of the 

higher values so we find no evidence to exclude them from the analysis. The shift in the distribution can therefore be 

regarded as an effect of threshold level selection, which determines the lower end and therefore the shape of the lower part of 15 

the PDS distribution. Between the undisturbed upper part and the disturbed lower part a breakpoint at ܶ ൌ 15 years in the 

PDS is clearly visible from the robustly fitted GPD using the LMOM method. This illustrates an inherent danger of the PDS 

approach: An inappropriate threshold may entail considerable biases that outperform the possible gain of information by the 

method by far. This was neither visible from the square-root criterion nor from the graphical diagnosis (residual life plot, 

Fig. 8) which yielded indeed almost no bias in both cases (in the case of Bruck an der Mur, mean excess = 2.99 for the 20 

threshold of -17.1 °C, and in the case of Graz, mean excess = 1.82 for threshold of 32.1 °C). 
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Similar shifts may arise if the extreme value series contains dependent events. Non-extreme events are generally more likely 

to cluster than extreme events because they are generated by exceptional process combinations which are unlikely to occur 

more often during one extreme weather situation. Thus, dependencies may possibly affect all parts (but more likely the lower 

part) of the distribution apart from the maximum, which remains unchanged. In consequence, the empirical distribution is 

stretched at the lower tail (shifted to the left), with similar consequences on lower and upper tail as described for the case of 5 

data uncertainty and leverage points. Such artifacts are difficult to detect in quantile plots of one extreme value series alone, 

but are often visible from direct comparison of AMS and PDS approaches. Albeit both AMS and PDS may be affected by 

dependency of events, AMS behaves more robust since it selects only one event per year.  

 

Figure 7: Return level plots of (a) temperature minima at Bruck an der Mur, and (b) temperature maxima at Graz. Return level 10 
estimation is based on the block maxima approach and on the threshold excess approach with two different parameter estimation 
methods (MLE and LMOM-estimation).  

We did not expect these findings, which contradict to the spirit of most existing studies that aimed to recommend the best 

performing method for a variable or situation. We recommend performing both approaches, as their synoptic assessment by 

means of diagnostic plots together with overall and conditional goodness-of-fit measures offers a more complete diagnosis of 15 

the quality of extreme series and the resulting distributions. 

Concerning the parameter estimation method, there are also benefits and disadvantages that have to be balance against each 

other. MLE has some merit with respect to calculating reliable confidence intervals via profile likelihood. Confidence 

intervals for estimation via LMOM were derived with non-parametric bootstrapping, which is arguably less trustworthy for 

indicating the uncertainty of the estimates. However, LMOM-estimation has been shown to yield more robust estimation 20 

results for small sample sizes (Hosking et al., 1985; Hosking and Wallis, 1987), which can be especially beneficial when 
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analyzing environmental data like temperature or precipitation indicators, which are derived from raw measurements at 

meteorological measuring stations. Regarding the overall results, LMOM-estimation turned out to offer a better fit than 

MLE, which is consistent with previous findings (Hosking et al., 1985; Hosking and Wallis, 1987; Bezak et al., 2014). 

 

 5 

Figure 8: Mean residual life plots of (a) temperature minima the hot spot in Bruck an der Mur and (b) temperature maxima at 
Graz. Black lines indicate the 95% confidence interval for the mean excess and orange lines indicate the threshold selected by 
means of the square root rule. 
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Concerning the comparison based on the goodness-of-fit of the distributions it shall be noted that a formal comparison of the 

two extreme value selection approaches is not straightforward. Measures of goodness-of-fit are not fully conclusive, as the 

underlying extreme value series are derived by different methods and thus are not directly comparable. Our analysis 

demonstrates that the choice between these approaches has to be based on the statistical properties of the extreme value 

series, which are related to the indicators under consideration and on data availability. The conditional measures proposed in 5 

this paper help to perform a more specific assessment for extreme events, but they are also not a remedy to overcome this 

problem. They are a way to assess the goodness of fit at the upper tail of the distribution and facilitate the comparison 

between AMS and PDS. These metrics can assist, but not substitute careful analysis of assumptions. We show that 

contrastive plotting methods can strongly support these analyses.  

While the methodology of this study can be easily generalized and extended to cover other environmental variables, two 10 

possible limitations have to be discussed. Firstly, seasonality of temperature and precipitation extremes has not been taken 

into account. While maximum/minimum temperatures will always occur in the same season, which will factor out any 

seasonal heterogeneity, this is not genuinely the case for extreme precipitation events, where different seasonality of 

occurrence may be linked with different processes (Hundecha et al., 2009). In order to account for seasonal effects, a 

common approach is to split the events into process-homogeneous subsets based on seasonality (e.g. Laaha and Blöschl 15 

(2006) for low streamflows), on a typology of processes (e.g. Merz and Blöschl (2003) for floods based on rainfall types and 

catchment preconditions) or on a temporal stratification (e.g. Méndez et al. (2008) for wave height and Maraun et al. (2009) 

for heavy precipitation). For each subset extreme value analysis is performed separately, leading to process-specific return 

levels, such as summer and winter low flows in the case of minimum discharges. These quantities may be combined by a 

mixed distribution model to yield overall return levels (e.g. Hundecha et al., 2009). For further discussion of modelling 20 

dependent and non-stationary time series extremes it is referred to Chavez-Demoulin and Davison (2012). 

Secondly, threshold selection in the threshold excess method is a legitimate subject for debate. In recent years, efforts have 

been made to overcome the problem of visual threshold selection, e.g. by robust threshold selection (Dupuis, 1999), 

additional likelihood-based procedures for supplementing visual diagnostics (Wadsworth and Tawn, 2012; Wadsworth, 

2016), Bayesian approaches (Tancredi et al., 2006; Lee et al., 2014) and extreme value mixture models (MacDonald et al., 25 

2011). In addition, attempts were made to develop more automated approaches for extreme value threshold estimation, 

including the automated threshold selection approach by Thompson et al. (2009), the multiple threshold method by Deidda 

(2010) and the automatic threshold and run parameter selection by Fukutome et al. (2015). Several automated threshold 

selection methods (ATSM by Thompson et al., 2009; MTM by Deidda, 2010) which have been tested for the time series 

under consideration yielded dissatisfying and inconsistent thresholds: Threshold values for time series which exhibit similar 30 

empirical distributions varied considerably and it was noticed that results were depending strongly on the range over which 

the functions are fit as well as the number of breaks set within this range. While certain patterns of convergence were found 

using brute force methods, it is argued that these procedures somehow replace the threshold selection problem with that of 
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selecting an appropriate range and an appropriate number of breaks. Therefore, the application of the square root rule in 

combination with graphical diagnostics is a feasible approach that led satisfactory results in the present study. 

5 Conclusion 

We compared statistical methods for extreme value analyses based on four climate indicators related to daily precipitation 

and temperature. While the indicators were selected for studying the exposure of road infrastructure to extreme weather 5 

events, the assessments are equally relevant for a range of other environmental variables including meteorological and 

hydrological quantities. We first analyzed the goodness-of-fit of distributions to extreme value series consisting of annual 

maxima (AMS) and threshold exceedances (PDS) using two parameter estimation methods.  

Results for the parameter estimation methods vary considerably between stations and approaches. For the AMS approach, 

LMOM yielded, on average, better fitted distributions than MLE. The goodness-of-fit turned out to be more balanced with 10 

respect to the PDS approach, with a slight advantage of MLE. In most cases there were only minor differences between MLE 

and LMOM when considering return levels below 10 years, but often considerable differences for larger return periods.  

Concerning extreme value selection, the relative performance of AMS and PDS approaches vary between meteorological 

indicators. For precipitation and temperature difference the AMS data outperformed the PDS approach. For temperature 

maxima and minima the PDS approach appeared better suited. 15 

Regarding goodness-of-fit for extreme events that are typically used as design-values (T of 10 years and more), results show 

an overall advantage of using L-moments estimation as compared to MLE, and that the AMS approach slightly outperforms 

the threshold excess approach. The AMS fitted on the basis of LMOM estimation method performed better than all other 

combinations of approaches in this study. 

We further examined the conditional performances of AMS and PDS approaches with respect to the return period in more 20 

detail. From conditional performance measures and synoptic plots, we found systematic deviations between AMS and PDS 

approaches. For low return periods (non-extreme events) the PDS approach tends to overestimate return levels as compared 

to the AMS approach, whereas an opposite behavior was found for high return levels (extreme events). The assessment of 

extreme cases where approaches differed significantly suggests that this behavior may be related to two factors, sampling 

uncertainty and threshold selection.  25 

Regarding sampling uncertainty, we found that outliers may not only attract the distribution at the tail where they occur, but 

they may also bend the curve at the opposite tail as a consequence of limited flexibility of the extreme value distributions. 

Such leverage effects can be handled by careful inspection of quantile plots. Regarding threshold selection, the analysis of 

extreme cases within the data set revealed that an inappropriate threshold may lead to considerable biases that may 

outperform the possible gain of information from including additional extreme events by far. Selecting a high threshold will 30 

determine the lower end of the extreme value distribution whereas the upper tail remains unchanged. This may introduce an 

inflection point in the distribution, which is against its ideal shape according to extreme value theory, resulting in poor 
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estimates of the theoretical distribution. This effect was neither visible from the square-root criterion, nor from the graphical 

diagnosis (mean residual life plot) which yielded indeed no atypical biases for the analyzed cases. Similar effects may arise 

when the extreme value series contains dependent events that may stretch the empirical distribution at the part where they 

occur. These findings where against our expectations that the estimation of the theoretical distribution will greatly profit 

from the gain of information that is provided by the PDS approach. 5 

We emphasize the reliable extreme value statistics require controlling for sample effects in order to avoid biased models. In 

our study, the differences and relative merits of methods were best visible from a direct comparison of AMS and PDS 

approaches. We therefore recommend performing both analyses and carefully analyze the fit of distribution relative to the 

respective sample and relative to each other, by means of synoptic quantile plots. This will make the analyses more robust, in 

cases where threshold selection and dependency introduces biases to the PDS approach, but also in cases where the AMS 10 

contains non-extreme events that may introduce similar biases. For assessing the performance of extreme events we 

recommend conditional performance measures such as CRMSE10 and CMAE10 in addition to unconditional indicators. 

Acknowledgements 

The paper is a contribution to UNESCO’s FRIEND-Water program. The authors would like to thank the Austrian Climate 

Research Program ACRP for financial support through the project DALF-Pro (GZ B464822). We thank the Central 15 

Institution for Meteorology and Geodynamics (ZAMG) for providing meteorological data. 

References 

Aldrich, J.: R. A. Fisher and the making of maximum likelihood 1912–1922, Stat. Sci., 12(3), 162–176, 

doi:10.1214/ss/1030037906, 1997. 

APCC – Austrian Panel on Climate Change: Österreichischer Sachstandsbericht Klimawandel 2014 (AAR14), Austrian 20 

Academy of Sciences Press, Vienna, Austria, 1096 pages, ISBN 978-3-7001-7699-2, 2014. 

Balkema, A. and de Haan, L.: Residual life time at great age, Ann. Probab., 2, 792–804, doi:10.1214/aop/1176996548, 1974. 

Basrak, B.: Fisher-Tippett Theorem. In: Lovric, M. (ed.): International Encyclopedia of Stat. Sci., Berlin Heidelberg: 

Springer, 525–526, 2014. 

Ben-Zvi, A.: Rainfall intensity–duration–frequency relationships derived from large partial duration series, J. Hydrol., 25 

367(1–2), 104–114, doi:10.1016/j.jhydrol.2009.01.007, 2009. 

Bezak, N., Brilly, M. and Šraj, M.: Comparison between the peaks-over-threshold method and the annual maximum method 

for flood frequency analysis, Hydrolog. Sci. J., 59(5), 959–977, doi:10.1080/02626667.2013.831174, 2014. 

BMLFUW – Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management: Hydrologischer 

Atlas Österreichs, Vienna, 2007. 30 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-373, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 5 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



22 
 

Burn, D. H.: The use of resampling for estimating confidence intervals for single site and pooled frequency analysis. 

Hydrolog. Sci. J., 48(1), 25–38, doi:10.1623/hysj.48.1.25.43485, 2003. 

Castillo, E., Hadi, A. S., Balakrishnan, N. and Sarabia, J. M.: Extreme Value and Related Models with Applications in 

Engineering and Science, Wiley Series in Probability and Statistics, Wiley: Hoboken, New Jersey, 2005 

Chavez-Demoulin, V. and Davison, A. C.: Modelling time series extremes, Revstat, 10(1), 109–133, 2012. 5 

Cheng, L., AghaKouchak, A., Gilleland, E. and Katz, R.W.: Non-stationary extreme value analysis in a changing climate, 

Climatic Change, 127, 353–369, doi:10.1007/s10584-014-1254-5, 2014. 

Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Berlin/Heidelberg: Springer, 2001. 

Cunnane, C.: A particular comparison of annual maxima and partial duration series methods of flood frequency prediction, J. 

Hydrol., 18(3–4), 257–271, doi:10.1016/0022-1694(73)90051-6, 1973. 10 

Davison, A. C. and Smith, R. L.: Models for exceedances over high thresholds, J. Roy. Stat. Soc. B, 52(3), 393–442, 

doi:10.2307/2345667, 1990. 

Deidda, R.: A multiple threshold method for fitting the generalized Pareto distribution to rainfall time series. Hydrol. Earth 

Syst. Sc., 14, 2559-2575, doi:10.5194/hess-14-2559-2010, 2010. 

Dupuis, D. J.: Exceedances over high thresholds: a guide to threshold selection, Extremes, 1(3), 251–261, 15 

doi:10.1023/A:1009914915709, 1999. 

Doll, C., Trinks, C., Sedlacek, N., Pelikan, V., Comes, T. and Schultmann, F.: Adapting rail and road networks to weather 

extremes: case studies for southern Germany and Austria, Nat. Hazards, 72(1), 63–85, doi:10.1007/s11069-013-0969-3, 

2013. 

Eisenack, K., Stecker, R., Reckien, D. and Hoffmann, E.: Adaptation to Climate Change in the Transport Sector: A Review, 20 

PIK-Report, 122, Potsdam: Potsdam Institute for Climate Impact Research, 2011. 

Embrechts, P., Klüppelberg, C. and Mikosch, T.: Modelling extremal Events for Insurance and Finance, Berlin-Heidelberg: 

Springer, 2003. 

Ferreira, A., de Haan, L. and Peng, L.: On optimising the estimation of high quantiles of a probability distribution, Statistics 

37(5), 401–434, doi:10.1080/0233188021000055345, 2003. 25 

Fisher, R. A.: On an absolute criterion for fitting frequency curves, Messenger of Mathematics, 41, 155–160, 1912. 

Reprinted in Stat. Sci. 12, 39-41, 1997. 

Fisher, R. A. and Tippett, L. H. C.: Limiting forms of the frequency distribution of the largest and smallest member of a 

sample. Proc. Camb. Philos. Soc., 24, 180–190, doi:10.1017/s0305004100015681, 1928. 

Fréchet, M.: Sur la loi de probabilité de l'écart maximum. Ann. Soc. Polon. Math., 6(3), 92–116, 1927. 30 

Fukutome, S., Liniger, M.A. and Süveges M.: Automatic threshold and run parameter selection: a climatology for extreme 

hourly precipitation in Switzerland, Theor. Appl. Climatol., 120(3), 403 –416, doi:10.1007/s00704-014-1180-5, 2015. 

Fürst J., Godina R., Nachtnebel H.P. and Nobilis F.: Der Hydrologische Atlas Österreichs – Grundstock einer 

hydrologischen Geodateninfrastruktur für Ingenieure, Planer und die Öffentlichkeit. In: Strobl, J, Blaschke, T and 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-373, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 5 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



23 
 

Griesebner, G. (eds): Angewandte Geoinformatik, Verlag Wichmann, Heidelberg, 334–343, ISBN: 978-3-87907-4808, 

2009. 

Gilbert, R. O.: Statistical Methods for Environmental Pollution Monitoring, New York: Wiley, 1987. 

Gilleland, E. and Katz, R. W.: New software to analyze how extremes change over time, Eos, 92(2), 13–14, 

doi:10.1029/2011EO020001, 2011. 5 

Gnedenko, B. V.: Sur la distribution limite du terme maximum d'une serie aleatoire, Ann. Math., 44, 423–453, 

doi:10.2307/1968974, 1943. 

Greenwood, J. A., Landwehr, J. M., Matalas N. C. and Wallis, J. R.: Probability weighted moments: Definition and relation 

to parameters of several distributions expressable in inverse form, Water Resour. Res., 15, 1049–1054, 

doi:10.1029/WR015i005p01049, 1979. 10 

Gumbel, E. J.: Statistics of extremes, New York: Columbia University Press, 1958. 

Hald, A.: On the History of Maximum Likelihood in Relation to Inverse Probability and Least Squares. Stat. Sci., 14(2), 

214–222, doi:10.1214/ss/1009212248, 1999. 

Hiebl, J., Reisenhofer, S., Auer, I., Böhm, R. and Schöner ,W.: Multi-methodical realisation of Austrian climate maps for 

1971–2000, Adv. Sci. Res., 6, 19–26, doi:10.5194/asr-6-19-2011, 2011. 15 

Hosking, J. R. M., Wallis, J. R. and Wood, E. F.: Estimation of the generalized extreme-value distribution by the method of 

probability-weighted moments, Technometrics, 27(3), 251–261, doi:10.1080/00401706.1985.10488049, 1985. 

Hosking, J. R. M., Wallis, J. R. and Wood, E. F.: Parameter and quantile estimation for the generalized Pareto distribution, 

Technometrics, 29(3), 339–349, doi:10.2307/1269343, 1987. 

Hosking, J. R. M.: L-Moments: analysis and estimation of distributions using linear combinations of order statistics. J. Roy. 20 

Stat. Soc. B, 52(1), 105–124, doi:10.2307/2345653, 1990. 

Hundecha, Y., Pahlow, M. and Schumann, A.: Modeling of daily precipitation at multiple locations using a mixture of 

distributions to characterize the extremes, Water Resour. Res., 45, W12412, doi:10.1029/2008WR007453, 2009. 

IPCC – Intergovernmental Panel on Climate Change: Managing the Risks of extreme Events and Disasters to Advance 

Climate Change Adaptation, Special Report of the Intergovernmental Panel on Climate Change, Cambridge: Cambridge 25 

University Press, 2012. 

Jarušková, D. and Hanek, M.: Peaks over threshold method in comparison with block-maxima method for estimating high 

return levels of several Northern Moravia precipitation and discharges series. J. Hydrol. Hydromech., 54(4), 309–319, 

doi:10.2478/v10098-010-0009-x, 2006. 

Katz, R. W., Parlange, M. B. and Naveau, P.: Statistics of extremes in hydrology. Adv. Water Resour., 25, 1287–1304, 30 

doi:10.1016/S0309-1708(02)00056-8, 2002. 

Katz, R. W.: Statistics of extremes in climate change, Climatic Change 100(1), 71–76, doi:10.1007/s10584-010-9834-5, 

2010. 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-373, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 5 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



24 
 

Katz, R. W.: Statistical methods for nonstationary extremes. In: AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S. and 

Sorooshian, S. (eds): Extremes in a Changing Climate – Detection, Analysis and Uncertainty, 15–37, Springer 

Netherlands, 2013. 

Kendall, M. G.: Rank Correlation Methods, 4th Edition, Griffin, 1976. 

Koetse, M. J. and Rietveld, P.: The impact of climate change and weather on transport: An overview of empirical findings. 5 

Transport. Res. D-Tr. E., 14(3), 205–221, doi:10.1016/j.trd.2008.12.004, 2009. 

Laaha, G. and Blöschl, G.: Seasonality indices for regionalizing low flows, Hydrological Processes, 20(18), 3851–3878, 

doi:10.1002/hyp.6161, 2006. 

Lee, J., Fan, Y. and Sisson, S. A.: Bayesian threshold selection for extremal models using measures of surprise, Comput. 

Stat. Data An., 84, 84–99, doi:10.1016/j.csda.2014.12.004, 2014. 10 

MacDonald, A., Scarrott, C. J., Lee, D., Darlow, B., Reale, M. and Russell, G.: A flexible extreme value mixture model, 

Comput. Stat. Data An., 55(6), 2137–2157, doi:10.1016/j.csda.2011.01.005, 2011. 

Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, doi:10.2307/1907187, 1945. 

Maraun, D., Rust, H. W. and Osborn, T. J.: The annual cycle of heavy precipitation across the United Kingdom: a model 

based on extreme value statistics, Int. J. Climatol., 29, 1731–1744, doi:10.1002/joc.1811, 2009. 15 

Madsen, H., Rasmussen, P. F. and Rosbjerg, D.: Comparison of annual maximum series and partial duration series methods 

for modeling extreme hydrologic events: 1. At-site modelling, Water Resour. Res., 33(4), 747–757, 

doi:10.1029/96WR03848, 1997a. 

Madsen, H., Pearson, C. P. and Rosbjerg, D.: Comparison of annual maximum series and partial duration series methods for 

modeling extreme hydrologic events: 2. Regional modelling, Water Resour. Res., 33(4), 759–769, 20 

doi:10.1029/96WR03849, 1997b. 

Matulla, C., Hollosi, B., Andre, K., Gringinger, J., Chimani, B., Namyslo, J., Fuchs, T., Auerbach, M., Herrmann, C., 

Sladek, B., Berghold, H., Gschier, R. and Eichinger-Vill, E.: Climate change driven evolution of hazards to Europe’s 

transport infrastructure throughout the 21st century, Theor. Appl. Climatol., in press. 

Méndez, F. J., Menéndez, M., Luceño, A., Medina, R. and Graham, N. E.: Seasonality and duration in extreme value 25 

distributions of significant wave height. Ocean Eng., 35(1), 131–138, doi:10.1016/j.oceaneng.2007.07.012, 2008. 

Merz R. and Blöschl G.: A process typology of regional floods. Water Resour. Res., 39, 1340–1359, 

doi:10.1029/2002WR001952, 2003. 

Leadbetter, M. R., Lindgren, G. and Rootzén, H.: Extremes and Related Properties of Random Sequences and Processes. 

Springer, London, 1983. 30 

Meyer M.D., Flood M., Keller J., Lennon J., McVoy G., Dorney C., Leonard K., Hyman R. and Smith J.: Climate Change, 

Extreme Weather Events, and the Highway System, Practitioner’s Guide and Research Report, NCHRP Report 750, 

Strategic Issues Facing Transportation – Volume 2, Transportation Research Board, Washington, D.C., 2014. 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-373, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 5 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



25 
 

Michaelides, S.: Vulnerability of transportation to extreme weather and climate change, Nat. Hazards, 72(1), 1–4, 

doi:10.1007/s11069-013-0975-5, 2014. 

Mkhandi, S., Opere, A.O., Willems, P.: Comparison between annual maximum and peaks over threshold models for flood 

frequency prediction, Proceedings of the International Conference on UNESCO FRIEND/Nile Project: ‘Towards a better 

Cooperation’, Sharm-El-Sheikh, Egypt, 2005. 5 

Nestroy, O.: Soil sealing in Austria and its consequences. Ecohydrol. Hydrobiol., 6(1–4), 171–173, doi:10.1016/S1642-

3593(06)70139-2, 2006. 

Northrop, P. N. and Coleman C. L.: Improved threshold diagnostic plots for extreme value analyses, Extremes, 17(2), 289–

303, doi:10.1007/s10687-014-0183-z, 2014. 

Papalexiou, S. M. and Koutsoyiannis, D.: Battle of extreme value distributions: A global survey on extreme daily rainfall, 10 

Water Resour. Res., 49(1), 187–201, doi:10.1029/2012WR012557, 2013. 

Parey, S., Hoang, T. T. H. and Dacunha-Castelle, D.: Different ways to compute temperature return levels in the climate 

change context, Environmetrics, 21, 698–718, doi:10.1002/env.1060, 2010. 

Pickands, J.: Statistical inference using extreme order statistics. Ann. Stat., 3, 119–131, doi:10.1214/aos/1176343003, 1975. 

Scarrott, C. J. and MacDonald, A.: A review of extreme value threshold estimation and uncertainty quantification. Revstat, 15 

10(1), 33–59, 2012. 

Schweikert, A., Chinowsky, P., Kwiatkowski, K. and Espinet, X.: The infrastructure planning support system: Analyzing the 

impact of climate change on road infrastructure and development, Transp. Policy, 35, 146–153, 

doi:10.1016/j.tranpol.2014.05.019, 2014a. 

Schweikert, A., Chinowsky, P., Espinet, X. and Tarbert, M.: Climate Change and Infrastructure Impacts: Comparing the 20 

Impact on Roads in ten Countries through 2100, Procedia Eng., 78, 306–316, doi:10.1016/j.proeng.2014.07.072, 2014b. 

Smith, R. L.: Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone. 

Stat. Sci. 4(4), 367–377, 1989. 

Tallaksen, L. M. and van Lanen, H. A. J.: Hydrological Drought, 1st Edition Processes and Estimation Methods for 

Streamflow and Groundwater, Developments in Water Science, 48, Amsterdam – Boston: Elsevier Science, 2004. 25 

Tancredi, A., Anderson, C. and O'Hagan, A.: Accounting for threshold uncertainty in extreme value estimation. Extremes, 9, 

86–106, doi:10.1007/s10687-006-0009-8, 2006. 

Thompson, P., Cai, Y., Reeve, D. and Stander, J.: Automated threshold selection methods for extreme wave analysis, Coast. 

Eng., 56(10), 1013–1021, doi:10.1016/j.coastaleng.2009.06.003, 2009. 

TRB – Transportation Research Board: Potential Impacts of Climate Change on US Transportation, Transportation Research 30 

Board Special Report 290, Washington, D.C., 2008 

UNECE – United Nations Economic Commission for Europe: Climate Change Impacts and Adaptation for International 

Transport Networks, New York and Geneva, 2013. 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-373, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 5 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



26 
 

Villarini, G., Smith, J. A., Ntelekos, A. A. and Schwarz, U.: Annual maximum and peaks‐over‐threshold analyses of daily 

rainfall accumulations for Austria, J. Geophys. Res.,116, D5, doi:10.1029/2010JD015038, 2011. 

Wadsworth, J. L. and Tawn, J. A.: Likelihood-based procedures for threshold diagnostics and uncertainty in extreme value 

modelling. J. Roy. Stat. Soc. B, 74(3), 543–567, doi:10.1111/j.1467-9868.2011.01017.x, 2012. 

Wadsworth, J. L.: Exploiting structure of maximum likelihood estimators for extreme value threshold selection. 5 

Technometrics, 58(1), 116–126, doi:10.1080/00401706.2014.998345, 2016. 

Weibull, W.: A statistical theory of strength of materials. Ingeniörsvetenskapsakademiens handlingar, 151, 1–45, 1939. 

Zhang, X., Zwiers, F. W. and Li, G.: Monte Carlo experiments on the detection of trends in extreme values. J. Climate, 17, 

1945–1952, doi:10.1175/1520-0442(2004)017<1945:MCEOTD>2.0.CO;2, 2004. 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-373, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 5 December 2016
c© Author(s) 2016. CC-BY 3.0 License.


